An Improved Version of the Reduction to Scalar CDS Method for the Numerical Solution of Separably Stiff Initial Value Problems
نویسندگان
چکیده
In 11 ] the Reduction to Scalar CDS method for the solution of separably stiff initial value problems is proposed. In this paper an improved version is given that is equivalent for linear problems but considerably superior for nonlinear problems. A naturally arising numerical example is given, for which the old version fails, yet the new version yields very good results. The disadvantage of the new version is that in the case of several dominant eigenvalues i > 1, say, a system of s nonlinear equations has to be solved, whereas the old version gives rise to s uncoupled nonlinear equations.
منابع مشابه
Local Annihilation Method and Some Stiff Problems
In this article, a new scheme inspired from collocation method is presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function. Then, the error analysis of this method is investigated by presenting an error bound. Numerical comparisons indicate that the presented method yields accur...
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملThe symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems
In this paper, we propose a modification of the second order method introduced in [Q. Li and X. Y. Wu, A two-step explicit $P$-stable method for solving second order initial value problems, textit{Appl. Math. Comput.} {138} (2003), no. 2-3, 435--442] for the numerical solution of IVPs for second order ODEs. The numerical results obtained by the new method for some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010